FLOW OF A SLIGHTLY RAREFIED GAS IN A
NARROW SLIT CHANNEL IN THE CASE OF
SUBLIMATION FROM ONE OF THE WALLS AND
HEAT INFLOW FROM THE OTHER
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The flow of a slightly rarefied gas (Kn < 0.1) in a narrow slit channel during sublimation
from one of the walls under the influence of an inflow of heat (by conduction and radiation)
from the other wall of the channel is considered. An equation is derived for the pressure
distribution in narrow slit channels in a form convenient for analytical investigation,

Various cases of the flow of a slightly rarefied vapor through narrow slit channels were studied in
[1-3] for low and medium Knudsen numbers (0.01-0.1) with symmetrical sublimation from both walls. One
characteristic of these flows was the practically uniform distribution of the thermodynamic parameters
of the vapor along the normal to the wall.

In many technological devices (such as sublimation chambers of the tray variety) the heat- and mass-
transfer processes are not organized symmetrically; this distorts the uniformity of the vapor-flow param-
eter distribution and, correspondingly, modifies the character of the flow, In order to analyze this in-
fluence we shall here consider flows of slightly rarefied vapor in a narrow gap between parallel walls
(Fig. 1) arising as a result of sublimation from the wall 1 into the channel. We shall assume that heat is
conveyed to the phase-transition surface from wall 2 by way of the flowing vapor and radiation,

In the symmetry plane of the channel we introduce the rectangular coordinates Oxy., The distance
from this plane is measured by the coordinate z. If the height of the slit channel 2h(—h < z < h) is small
compared with the scale L of vapor flow in the Oxy plane, the equations of motion, continuity, and energy
may conveniently be expressed in the following form {as in the analysis of the flows considered in [1-4}
we shall specially distinguish the transverse velocity component (U = U + kw) and the derivatives with re-
spect to z):

g du du
—{p——|— VP = 4w — — 71 U); 1
P (u az) viP =pluyjut pw F» V1 (uv; u) (1)
oP a3 dw dw
= (02— pw— —puyw - w); 2
% % (u az) P —— —PUTVW V) (@) (2)
8/ oH [ : (()u H
gl pr| P —_p =)=
0z <P~ 0z ) rL v — # . 0z
; oH [ Ou
=Pr [pule—rpw—52——+0(\u~52—\V1wl)+
+0(MV1“12)+0(P~ %Lgl” -+ vy (v, F); (3)
96D LA ouy=0. @)
0z

Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk. Trans-
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 28, No. 1, pp. 46-56, January, 1975, Original article
submitted March 13, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

32



A D S,

2h

] S . G
B IR g I

TTTITTITIIJITTTTIIT 777 77777 T(P)
!

Y-—-—

Fig. 1. Scheme of flow of a slightly rarefied vapor in
the gap between parallel walls.

In view of the possible severe inhomogeneity of the temperature field across the slit channel, we
allow for the temperature dependence of the coefficient p, but assume that ¢p and Pr are constants,

At the walls of the channel we have to satisfy conditions corresponding to slippage and a tempera-
ture jump. If we neglect the thermal creep and the resistance of the phase transition (shown to have only
a slight effect on the flows under consideration in [2]) and also quantities of the order of h%/L? by compar-
ison with unity, these conditions may be written in the form [5]

. 2——9I u Jdu
- 2 _ ’
pVe—hH
for z=-"h, (5)
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We shall consider laminar vapor flows corresponding to small Reynolds numbers {Re = pV;h?/uL).
Since the terms on the right-hand sides of Eqs. (1)-(3), considered in relation to the terms on the left-
hand sides of the corresponding equations, are quantities of the order of Re or h?/L?, in the linear ap-~
proximation (fo which we shall here restrict our analysis) these may be neglected; taking the power re~
lationship of [4] for the viscosity [uy/tywy = (H/Hy)®] (w = 0.8 for T ~ 273°K; w ~ 1 for T < 273°K), we
may then write system (1)-(3) and conditions (5), (6) in dimensionless form as follows;
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The problem represented by Egs. (7)-(10) is similar to that considered in [5], which related to
Couette flow in a slightly rarefied gas; it differs from the latter chiefly by virtue of the nonzero pressure
gradient VII and the consequent field of velocities averaged over the height of the slit channel, which is
characterized by the linear scale L (L » h). In addition to this, in the present case there is no relative
motion of the walls, and a different approximation is used for the temperature dependence of the coefficient .

If we confine attention to fairly slow subsonic flows (M® < 1), the right-hand side of Eq. (8) may be
neglected. Integrating Egs. (7) and (8) with respect to ¢ a corresponding number of times we deduce
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Fig. 2. Change of pressure (N/m? in the gap between
circular disks (R', mm) for a sublimation rate jp, (kg/m?
-sec) equal to: 1) 10-107%; 2) 8-107% 3) 6-107%; 4)
41074 5)2-107% 6)1°107% 7) 0.5-107* and a slit height

2h (mm) of: a) 2; b) 2; c) 20,

By mQ+L=1) _ x‘°+2(§)—x"’+‘-’(—l)] DB Dol m: a1)
U=t 0O 1>1+[ ; " v+ By; &
X(Q) = [by + (@ + Db/ Ot, (12)

Here By =B (£ n); bj =bjE, n); x(@) =xE, 0, 0.

Since we are considering flows corresponding to Knudsen numbers of Kn = 0,1, on substituting (2)
into the boundary conditions (9) and (10) we may neglect quantities of the order of k’ﬁ [kpy = O(Kn)} and
make the substitution x(—1) = (@), x(1) ® Xy on the right-hand sides. We thus obtain
‘ , e+ - yot (IT)
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Working to the same accuracy, by substituting (12) into the boundary conditions (9) and (10) we ob-
tain By = by VIl where
e+ D—ye+—1) I —(@ -+ 2)b,{[x(1) +x(— DI R, b,[x 2 —x 2D}
o (©+2) by{Ix (D—x (—DIT-kb, [xY2 + %72 (D]} ’
by=k,(b;—1) ¥/ (/L.

(14)

After integrating Eq. (4) with respect to z between —h and h, allowing for the fact that sublimation
takes place from the lower wall [w(h) = 0; p(—h)w(—h) = jm], we obtain a differential equation describing
the pressure distribution in the part of the slit channel under consideration:

’ 1
v—1 hH,, . © Udz
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(15)
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Fig, 3. Temperature distribution in the gap between
circular disks (R', mm): 1) temperature of heater
disk Ty; 2) subliming disk T(P); 3,4) vapor tempera-
ture T (h) and T (—h) in the gap between the disks for a
slit height 2h (mm) and a sublimation rate jy, (kg/ m?
sec) of: a) 2and 6-107% b) 2and 10-107% c) 20 and
1:107% (continuous lines) or 0.5°107! (broken lines).

In general,
U= — AQL %) VI,

where
A(L, %) = 22’—1 - [

2

(I—=b)y(=1) , (=1
wb? o - 2) 6

xOFY (1) — yPeth (1)
2(@ -+ 1) (@ -+ 2)b3

b
| e -
b,

The sublimation intensity j, is related to the specific thermal flux g traveling toward the lower wall
by the obvious equation jy = q/r. The flux g = q; + g5 where gy is the heat flow from the vapor, and q, is
the radiant thermal flux absorbed by the phase-transition surface,

It is already well known [5, 6] that for the flow of a rarefied gas q; consists not only of the flow of
heat associated with thermal conductivity, but also that due to the work of frictional forces, i.e.,

g = }V?I.._:_P‘u_?l{_‘) :&wﬂzw’j’ [Xma_'x.{_(y.__l)permeaU:l.
0z 02 Jymp h 0 at
Since we are considering fairly slow flows (M? «< 1), to the accuracy already specified we may
neglect the second component of heat flux as being a quantity of the order of KnM?. By virtue of (12)
;\'UJO TUJO

Lwolwo p

a9

If we neglect the absorption of the radiant flux in the narrow slit channel and remember that the
linear scale (characterizing the essential changes in the flow parameters and the temperature Ty, of the
heated wall) L. > h, we may consider that radiant heat transfer takes place almost solely between opposite
elements of the channel walls:

Gy = €0 [Thy— T*(P)] = e0 Tpo [io — ¥* (IN)].

By substituting the expressions for jy,, 4y, q, into (15) and using the equations

(v — D Hyo/Vi =M% Cplig = Pr Ay
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e _ . ‘ we thus obtain the fundamental equation
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In any practical systems, either the thermal load dis-
. aw - tribution q(x, y) along the heated wall or the corresponding

\ \\ temperature distribution Tw(x, y), [Xw = xw(£, 1)] may be

specified. If the transfer processes are limited by the access

of the sublimed material to the surface z = —h, the specified
a n @ & gme1ot quantity is the function jy (x, y). Inthose cases in which we
may neglect the dependence of the latent heat of the phase tran-
sition on the parameters of the vapor flowing around the ele-~
ment of the subliming surface [r(P) = const], the specification
of jy; (%, y) is equivalent to the specification of q(x, y).

viA(, X,)VIP] =

400

Fig. 4. Dependence of the limiting
permissible pressures (P, N/mz) at
the cutoff point of the slit channel be~
tween the disks on the intensity of

sublimation jm, (kg/ m? *see) and the For specified distributions of jy(x, y) [or q(x, y)], the
slit height 2h (mm): 1) 2; 2) 3; 3) 4; dimensionless enthalpy of the heated wall xy may be found
4) 5. ' from the following transcendental equation:
Ao+ — gt (1) {1 Ry [goH /2 = yat1/2 ([I)]} S Bifygt — ()] = Q. an
2w 1) o M @

Here ) = Prhr(P)jm(x, y)/tiwo or 2 = Prha(x, y)/uwe- The solution is a function of the form yy, = xy (1T
¢, ). Ina number of cases this function is easy to express in analytical form. For Bi > 1 {radiant heat
transfer predominant) to a first approximation

4 Sy
ko = )/ 20D+ a8

This solution may be refined by the perturbation method, making use of the discarded terms of Eq.
(17). The parameter Q under the root sign is then replaced by the parameter 91:

Lyt (H) i i (o+h/e — y@+1 (H) b ‘ O @2/
Q=0 _ Bi < {1 - ‘ﬁ“ [X4(H) - _BL} 172 (H)p .
iy = 9 ((D T l) 2 { J

It is also easy to obtain a solution to Eq. (17) for Bi < 1, If Tyw < 273°K we have w = 1, In this case Eq.
(17) differs from the biquadratic form by a perturbing term of the order of kiy = O(Kn). The solution may
easily be obtained to an accuracy of O(Kn) by perturbation theory.

For a specified distribution of jy(x, ¥), and also for r = const and a specified q(x, y) distribution,
we may express Eq. (16) in the form

VIA M & pVIE] =0 E, ). (@9)
Here
him
oo YM?,

For flows along the x axis and flows possessing cylindrical symmetry (slit channel formed by two
disks ®¢, n) = 2,(R"), R' = £% + %) the equation of motion of the rarefied gas (19) reduces to an ordinary -
differential equation,

AL g n)=A[L %, 0L, & o) @E m) =

1 d T dI?
v lvA H, Rl
Ry dR [(R) a ) ar

Here A,(II, R') = A; (I, &, 7). The parameter v is equal to 0 or 1 for flows along the x axis and those with
cylindrical symmetry, respectively. In the first case R' = &.

] — @, (R). (20)

In practice it is usual to specify the pressure at the cutoff point of the slit channel H(Rl,) (for v = 0
Rb is the length of the slit channel; for v =1 R;, is the radius of the disks forming the walls of the slit
channel). For R' = 0 dII/dR' = 0.
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1. N | The first integral of Eq. (20) satisfying the latter condi-
o A : tion is '
: dl BR) o e v e e
: h : AR ®R) 4,0, R) i O, (R) (,} (R1)" @ (R)dR;. 21
22 ; | Thus, the pressure distribution in the slit channel is
’ . e — 1 found by solving the Cauchy problem f?r Eq. (21) by reference
] x — 2 l to the specified pressure II for R® = Ry, which may easily be
i e — 3 . x done by the Runge — Kutta method in an electronic computer.
¢ ——
g E ‘ L An equation extremely convenient in any‘analytical inves~-
tigation of the process is obtained for the case of uniform sub-
20— i limation from the lower wall (j; = const), which may be realized
| / ' either by introducing a corresponding supply of the subliming
5 | Ix@) / il material or by the uniform inflow of heat to the heated wall (g
: ,ﬁ“ = const) if r = const. In this case the solution of Eq. (17) takes
7 I - (’.--,4" ‘ the form xw = X (1) and hence A (T, xy) = A;(1). It is, further-
%/ - more, quite clear that (£, n) = & = const. Thus, the basic
08 L= L 1 equation (16) here degenerates into the Poisson equation
o 45 0 & pr I
VY =0, V=2 j T4, (T 411, (22)
Fig. 5. Velocity (a) and tempera-
ture x = T/ Ty (Tyo = 273°K) b) and we may then make use of various powerful methods of the
profiles of the flow of a slightly theory of analytical functions in order fo find the pressure dis-
rarefied gas in narrow slit chan- tribution in slit channels bounded by a contour T having a fairly
nels for the following values of 2h complicated configuration, containing arcs I'; corresponding to
(mm), P (n/m?), and jpy (kg/m? construction elements which impede the free egress of vapor
-sec), respectively: 1) 20; 7.2; (0ll/on = 0 on I‘j). For example, the results of the problems
2-107%; 2) 2; 100; 2-107% 3) 2; solved in [2, 3] may easily be extended to the processes here
176.96; 2-107% 4) 2; 176.96; under consideration. Here it is convenient to return to dimen-
6.1074, —v = prU/h2VP; ¢ =z/h; sional quantities. Instead of (22) we then obtain
X = T/ Ty . P
ViY== 2’2;'” P Y= ~~§— R;WOJC PA,(PydP. (22")
Here A,(P) =2 _Ii_;[(l—bl) X yoT2 A o — g — YO — g2t .
. by, oby o= b, } e X 2~ 1) (-2 8"
by — A2 — 0% — (0 + 2) by {y, —x_ + Ruby Iny2 —10 2 (P)I}

((’) “:“ 2) bz {X+ — % —:“ kubz [ng/g _i_ Xlﬂ (P)]}
X — 1T (P)

R R TR N e LT
by= (b — Dk, VEP);
by agt—geHe)
—_ / .
B I ¢ S (2 p—
u:2—6]/ng Pug RV Ty
) 2 Vi—TDc,hP
B 2% 15 e RV Ty
T 8 2yl —1Dc,hP

For purposes of illustration Figs. 2 and 3 show the pressure and temperature distributions in the
gaps between circular disks, calculated by means of the equation

. ’ “‘]m ’ ’
¥ =1 (Ro) + “oh [(Rof* — (R')1

for the sublimation of ice. It was assumed in these calculations that 6 = =1; ¢,=10.9; @ =0.8; v
=1.3505; Pr = 0,846,
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Of particular interest are those cases of sublimation in which the pressure in the center of the disk
approaches the value corresponding to the triple point (P = 610.67 N/m? for ice, Fig. 2a).

The curves shown in Fig. 4 provide an upper limit to the zone of permissible conditions, beyond
which melting of the ice begins in the central part of the disk. The vertical axis gives the pressure at the
cutoff point of the slit channel (R' =Ry = 0.75 m).

Considering these velocity and temperature profiles (Fig. 5), we see that with falling pressure of
‘the medium and the same rate of sublimation the slip velocity and temperature jump increase (curves 1,
2,3). Thus, for example, when P = 7.2 N/m? the temperature jump is 30° and when P = 176,96 N/m?
— 2,7°. For a pressure of over 610.67 N/m? the slip velocities and temperature jump are so small that
they may be neglected.

If the temperature distribution is specified on the heated wall
Tp=Tu 9 o= Y& M
we have A(Il, xy) = A1, £, ») and the fundamental Eq. (16) reduces to the form
\Y [A4 (H’ g, m VHZ} == (D4 (H: g, n). 23)

For flows along the x axis (£ = R', v = 0) and flows with cylindrical symmetry (R' = ¥ ¢2 + 7%, v = 1) the
latter equation degenerates into an ordinary differential equation,

1 d di®
- e RI’VA H,R, i =d) H, Rr,
& e | B AR ] —em Ry
_Zg'—=0_for R =0, I=I, for R =R,

When studying the sublimation process over a fairly wide range of pressures, it is desirable to re-
place the solution of the nonlinear two-point problem (24)-(25) by the solution of the Cauchy problem which
we obtain if we specify the vapor pressure II for R' = 0. The solution of the latter by the Runge — Kutta
method is easily carried out in an electronic computer,

NOTATION

P, H, oand pu are the pressure, enthalpy, density, and dynamic viscosity of the vapor;

u w are the projections of the flow velocity on the symmetry plane of the channel
and the normal to the wall;

H(P) and Hy are the enthalpy of the saturated vapor at a pressure P and at the temperature
of the heated wall, respectively;

Vi, L are the characteristic velocity and scale in the symmetry plane;

q, di. Qs are the total specific heat flux in the direction of the sublimation surface and
components corresponding to inflow from the vapor and radiant flux;

o, € are the Stefan— Boltzmann constant and the reduced emissivity of opposite ele-

" ments of the channel walls; .

a, 0 are the accommodation coefficient and proportion of diffusely reflected mole~
cules;

Cps Cy are the specific heats of the vapor at constant pressure and constant volume,
respectively;

r, is the latent heat of sublimation;

Oxy and z are the rectangular coordinates in the symmetry plane and distance from this
plane;

im is the rate of sublimation;

kg = (2 — @)/ - (15/8)Vyn/2(M/Rep); ky = (2 — 6)/(6)Y y7/2(M/Rep); Rep = (PyVih)/ (uwoRTwo); Po
= pwoViL/h% Re = pV h/Aul);
Kn, Pr are the Knudsen and Prandtl numbers;
M=Vy/[(y — 1)Hw0]1/ 2 is the characteristic Mach number;
¥ = cp/cys Ty = Hywo/cps Bi = heoThp/ Ayes Awos Hyyo
' are the thermal conductivity and dynamic viscosity of the vapor at temperature
Tywe- The index 0 refers to parameters at the cutoff point of the slit channel.
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